

The force-couple system consisting of \mathbf{R} and \boldsymbol{M}_{O} is shown in Fig. a. We now determine the final line of action of \mathbf{R} such that \mathbf{R} alone represents the original system.

$$
\left[R d=\left|M_{O}\right|\right] \quad 148.3 d=237 \quad d=1.600 m
$$

Hence, the resultant \mathbf{R} may be applied at any point on the line which makes a 63.2 angle with the x-axis and is tangent at point A to a circle of 1.600-m radius with center O, as shown in part b of the figure. We apply the equation $R d=M$ in an absolute-value sense (ignoring any sign of M) and let the physics of the situation, as depicted in Fig. a, dictate the final placement of \mathbf{R}. Had M_{O} been counterclockwise, the correct line of action of \mathbf{R} would have been the tangent at point B.
The resultant \mathbf{R} may also be located by determining its intercept distance b to point C on the x axis, Fig. c. With Rx and Ry acting through point C, only Ry exerts a moment about O so that

$$
R_{y} b=\left|M_{o}\right| \quad \text { and } \quad b=\frac{237}{132.4}=1.792 \mathrm{~m}
$$

Alternatively, the y-intercept could have been obtained by noting that the moment about O would be due to $R x$ only. A more formal approach in determining the final line of action of \mathbf{R} is to use the vector expression

$$
\mathbf{r} \times \mathbf{R}=\mathbf{M}_{O}
$$

where $\mathbf{r}=x i+y j$ is a position vector running from point O to any point on the line of action of \mathbf{R}. Substituting the vector expressions for \mathbf{r}, \mathbf{R}, and \mathbf{M}_{O} and carrying out the cross product result in $(x i+y j) \times(66.9 i+132.4 j)=-237 k$
$(132.4 x-66.9 y) \mathbf{k}=\mathbf{- 2 3 7} \mathbf{k}$
Thus, the desired line of action, Fig. c, is given by
$132.4 x-66.9 y=-237$
By setting $y=0$, we obtain $x=1.792 m$, which agrees with our earlier calculation of the distance b.

Helpful Hints
(1) We note that the choice of point O ass a moment center eliminates any moments due to the two forces which pass through O. Had the clockwise sign convention been adopted, M_{O} would have been $+297 \mathrm{~N} \cdot \mathrm{~m}$, with the plus sign indicating a sense which agrees with the sign convention. Either sign convention, of course, leads to the conclusion of a clockwise moment M_{O}.
Note that the vector approach yields sign information automatically, whereas the scalar approach is more physically oriented. You should master both methods.

